Introduction to GNU

Anthony Scemama <scemama@irsamc.ups-tlse.fr> -

Labratoire de Chimie et Physique Quantiques
IRSAMC (Toulouse)

Universite
Paul Sabatier

TOULOQUSE 111

dépassar &= fronthras: g

Compiling

« Compiler : translates from a language to another (usually machine language)
x.f90,x.c,x.m, ..

Source file (writter by the user)
X. nmod
Module file (in Fortran only)
X.0
Obiject file : Source file translated to binary
X. a
Archive. Static library.
X. SO
Dynamic library.

e Compiling : x. f 90 ->x. 0. x. 0 contains only the code defined in x. f 90.
e Library : Collection of *. o files "glued" together in one file.
e Linking : Assembling multiple object files and libraries in one executable file.

o Static library : Equivalent as a large . o file. Stored in the binary at link time

* Dynamic library : Only a pointer to the library is stored in the binary. The library
Is loaded at execution time.

» Upgrading the library doesn't require to recompile the programs that need it
» Sizes of executables are smaller
» Simplifies licencing problems : binary files can be given without libraries

Example

Consider this program

eFilet. f90 uses module ul andyv
eFilev. f90 uses module u2 and w
eFile ul. f 90 uses module d

eFile u2. f 90 uses module d
eFilew. f 90 uses module d

/\ /\
/\ \

Make

 The make utility automatically determines which pieces of a large program
need to be recompiled, and issues commands to recompile them.

* You need a file called a makefile to tell make what to do.

* Rules are given in the makefile

* The compilation is done by running make

*The -] N option will use N processes to compile in parallel

* Internally a dependency tree of the files is built, and the last modification dates
are accessed to check if a file needs to be re-built.

Rules

Rules have the following shape

t ar get
reci pe

ot ar get : Name of the file that is generated
eprerequi sites :File needed to create the target
or eci pe : Commands to create the target

Simple example:

my_program nmain.o funcl.o func2.o
gfortran -o nmy_programmain.o funcl.o func2.o0

mai n. o: nain.f
gfortran -c main.f

funcl.o: funcl.f
gfortran -c funcl.f

func2.0: func2.f
gfortran -c func2.f

cl ean:
rm mny_program *.o

Make has implicit rules. These are default rules to build . o files from source file
name extensions.

This works:

my_program nmain.o funcl.o func2.o0
gfortran -o ny_programmain.o funcl.o func2.o0

mai n. 0: mai n. f
funcl. o: funcl.f
func2.0: func2.f

. PHONY: cl ean
cl ean:
rm mny_program *.o

(A phony target is one that is not really the name of a file)

Pattern rules can be defined, and this is the most common way to use make.
The % symbol represents the pattern to match. For example:

% o:
gfortran -c $< -0 $@

defines a rule to compile all files ending with . f . In this example, the automatic
variables $@ and $< are used to substitute the names of the target file and the
source file in each case where the rule applies.

my_program
gfortran -o ny_program $"
% o:
gfortran -¢c $< -0 $@
. PHONY:
cl ean:

rm mny_program *.o

The automatic variable $* corresponds to the names of all the prerequisites, with
spaces between them.

8

Variables

Variables make Makefiles simpler. Machine-dependent data can be defined in
variables:

TARGET=ny_progr am

F90=gf ortran

FO0 FLAGS=-2

OBJ=mai n.o funcl.o func2.o0
RMVErm - f

$(TARCET) : $(0BJ)
$(F90) -0 $(TARGET) $(0BJ)

% o0: %f
$(F90) $(F90_FLAGS) -c¢ $< -0 $@

. PHONY: cl ean
cl ean:
$(RM $(TARGET) $(0BJ)

Built-in functions can simplify variable definitions:

SRC=$(wi | dcard *.f)
OBJ=%(pat subst % f, %o, $(SRCO))

$(wildcard *.f) isequivalentto*.f inthe shell.

e$(patsubst %f, %o, $(SRC)) will return $(SRC) with all filenames
finishing with . f substituted by . o.

All machine-dependent data can be moved into another file which will be included
in the makefile:

nmake. | nc;:

TARGET=ny_program
FO90=gfortran

FOO FLAGS=- Q2
RMVErm - f

10

Makefil e :

| ncl ude nake. i nc
SRC=$(wi | dcard *.f)
OBJ=%(pat subst % f, %o, $(SRC))

$(TARGET) : $(OBJ)
$(F90) -0 $(TARGET) $(0BJ)

% 0: % f
$(F90) $(F90_FLAGS) -c $<

. PHONY: cl ean

cl ean:
$(RM $(TARGET) $(0BJ)

11

-0 $@

	Compiling
	Example
	Make
	Rules
	Variables

