
Introduction to GNU Make
Anthony Scemama <scemama@irsamc.ups-tlse.fr>

Labratoire de Chimie et Physique Quantiques
IRSAMC (Toulouse)

Compiling

• Compiler : translates from a language to another (usually machine language)
x.f90, x.c, x.ml, ...

Source file (writter by the user)
x.mod

Module file (in Fortran only)
x.o

Object file : Source file translated to binary
x.a

Archive. Static library.
x.so

Dynamic library.

1

• Compiling : x.f90 -> x.o. x.o contains only the code defined in x.f90.

• Library : Collection of *.o files "glued" together in one file.

• Linking : Assembling multiple object files and libraries in one executable file.

• Static library : Equivalent as a large .o file. Stored in the binary at link time

• Dynamic library : Only a pointer to the library is stored in the binary. The library
is loaded at execution time.

• Upgrading the library doesn't require to recompile the programs that need it

• Sizes of executables are smaller

• Simplifies licencing problems : binary files can be given without libraries

2

Example
Consider this program

• File t.f90 uses module u1 and v

• File v.f90 uses module u2 and w

• File u1.f90 uses module d

• File u2.f90 uses module d

• File w.f90 uses module d
t

u v

d d u w

d d d

1

1 2 2

3 4 5

3

Make

• The make utility automatically determines which pieces of a large program
need to be recompiled, and issues commands to recompile them.

• You need a file called a makefile to tell make what to do.

• Rules are given in the makefile

• The compilation is done by running make

• The -j N option will use N processes to compile in parallel

• Internally a dependency tree of the files is built, and the last modification dates
are accessed to check if a file needs to be re-built.

4

Rules
Rules have the following shape

target : prerequisites
 recipe
...

•target : Name of the file that is generated

•prerequisites : File needed to create the target

•recipe : Commands to create the target

5

Simple example:

my_program: main.o func1.o func2.o
 gfortran -o my_program main.o func1.o func2.o

main.o: main.f
 gfortran -c main.f

func1.o: func1.f
 gfortran -c func1.f

func2.o: func2.f
 gfortran -c func2.f

clean:
 rm my_program *.o

6

Make has implicit rules. These are default rules to build .o files from source file
name extensions.

This works:

my_program: main.o func1.o func2.o
 gfortran -o my_program main.o func1.o func2.o
main.o: main.f
func1.o: func1.f
func2.o: func2.f

.PHONY: clean
clean:
 rm my_program *.o

(A phony target is one that is not really the name of a file)

7

Pattern rules can be defined, and this is the most common way to use make.

The % symbol represents the pattern to match. For example:

%.o: %.f
 gfortran -c $< -o $@

defines a rule to compile all files ending with .f. In this example, the automatic
variables $@ and $< are used to substitute the names of the target file and the
source file in each case where the rule applies.

my_program: main.o func1.o func2.o
 gfortran -o my_program $^
%.o: %.f
 gfortran -c $< -o $@
.PHONY: clean
clean:
 rm my_program *.o

The automatic variable $^ corresponds to the names of all the prerequisites, with
spaces between them.

8

Variables
Variables make Makefiles simpler. Machine-dependent data can be defined in
variables:

TARGET=my_program
F90=gfortran
F90_FLAGS=-O2
OBJ=main.o func1.o func2.o
RM=rm -f

$(TARGET): $(OBJ)
 $(F90) -o $(TARGET) $(OBJ)

%.o: %.f
 $(F90) $(F90_FLAGS) -c $< -o $@

.PHONY: clean
clean:
 $(RM) $(TARGET) $(OBJ) .

9

Built-in functions can simplify variable definitions:

SRC=$(wildcard *.f)
OBJ=$(patsubst %.f, %.o, $(SRC))

•$(wildcard *.f) is equivalent to *.f in the shell.

•$(patsubst %.f, %.o, $(SRC)) will return $(SRC) with all filenames
finishing with .f substituted by .o.

All machine-dependent data can be moved into another file which will be included
in the makefile:

make.inc:

TARGET=my_program
F90=gfortran
F90_FLAGS=-O2
RM=rm -f

10

Makefile :

include make.inc
SRC=$(wildcard *.f)
OBJ=$(patsubst %.f, %.o, $(SRC))

$(TARGET): $(OBJ)
 $(F90) -o $(TARGET) $(OBJ)

%.o: %.f
 $(F90) $(F90_FLAGS) -c $< -o $@

.PHONY: clean
clean:
 $(RM) $(TARGET) $(OBJ)

11

	Compiling
	Example
	Make
	Rules
	Variables

