
Introduction to Networking

A. Scemama

21/11/2024

Laboratoire de Chimie et Physique Quantiques, Univ. Toulouse/CNRS

Introduction to Networking

Networking

� Networking: the practice of connecting computers and other devices to share

resources, exchange information, and enable communication.

� Many di�erent communication protocols (TCP/IP, Bluetooth, MIDI, . . .)

� Local Area Network (LAN): Small geographical area (o�ce, home, university

campus).

� Wide Area Network (WAN): Large geographical area, composed of multiple LANs

(company o�ces in di�erent countries, internet)

1

The OSI Model

� OSI: Open Systems Interconnection model

� Theoretical framework to standardize network communication

� Network communications are divided into 7 layers

� Each layer serves a speci�c function and communicates only with the layers

directly above or below it

1. Physical Layer

� Handles the physical connection between devices to transmit raw binary data

� Example: Ethernet cables, wireless signals, switches, network cards

2

The OSI Model

2. Data Link Layer

� Manages the direct connections between network devices and handles data transfer

within a local network.

� Responsible for MAC (Media Access Control) addressing, which uniquely identi�es

each device on a network.

� Corrects errors from the physical layer

� Example: Network switches using MAC addresses to forward data.

3. Network Layer

� Manages IP (Internet Protocol) addressing and routing, determining the best path

for data packets across networks.

� Devices at this layer use IP addresses to forward data to its destination.

� Example: Routers function at this layer by directing data to other networks.
3

The OSI Model

4. Transport Layer

� Ensures reliable data transfer between devices, managing packet delivery,

end-to-end error checking, and �ow control.

� Key Protocols: TCP (Transmission Control Protocol) for reliable communication

and UDP (User Datagram Protocol) for faster, less reliable communication.

� Example: Online video streaming uses UDP, while �le downloads use TCP

5. Session Layer

� Manages sessions between applications, establishing, maintaining, and terminating

connections

� Allows multiple connections to exist independently and can resume broken

connections

� Example: Session management in applications like remote desktop. 4

The OSI Model

6. Presentation Layer

� Transforms data between network and application formats, handling encryption,

compression, and translation.

� Ensures data is readable by the application layer, supporting data encoding,

encryption, and compression.

� Example: Data encryption in HTTPS.

7. Application Layer

� The top layer where applications communicate over the network using protocols

suited to their speci�c needs.

� Examples: HTTP (HyperText Transfer Protocol), FTP (File Transfer Protocol),

SSH (Secure SHell), DNS (Domain Name System).

5

Sending a letter

� 7: Application: Alice writes a letter with her message for Bob

� 6: Presentation: Alice decides to use a speci�c language that Bob understands

� 5: Session: Alice con�rms that Bob's address is correct and arranges to send the

letter, expecting it will reach him directly

� 4: Transport: If Alice's letter is too long for one envelope, she divides it into

multiple parts, numbering each piece so Bob can reassemble it in the correct order

� 3: Network: Alice writes Bob's address on the envelope, indicating where the letter

should go.

� 2: Data Link: Alice places the letter in an envelope with a local postal code,

enabling the local post o�ce to send it to the correct regional o�ce.

� 1: Physical: The letter is physically transported by truck, plane, or postal carrier to

reach Bob's mailbox.

6

Receiving a letter

� 1: Physical: The letter arrives at Bob's mailbox

� 2: Data Link: The postal service veri�es it was sent to the correct local address

� 3: Network: Nothing

� 4: Transport: Bob puts the parts of the letter in the correct order, if it was split

� 5: Session: Bob veri�es the letter was meant for him and acknowledges it

� 6: Presentation: Bob decrypts or interprets the letter's content.

� 7: Application: Bob reads Alice's message

7

The TCP/IP Model

� Simpler, four-layer model developed for the internet, grouping some OSI layers into

broader categories

� Used in internet-based communications

1. Link Layer (Network Access): Combines OSI layers 1 and 2, covering physical

network connection and data link functions.

2. Internet Layer: Equivalent to OSI Layer 3, handling IP addressing and packet routing.

3. Transport Layer: Mirrors OSI Layer 4, managing data transfer with protocols like

TCP and UDP.

4. Application Layer: Combines OSI layers 5, 6, and 7, dealing directly with network

applications like HTTP and FTP.

8

IP Addressing

IP Addresses

� An IP (Internet Protocol) address is a unique identi�er assigned to each device on

a network, allowing it to communicate with other devices. (An IP address is like a

postal address for your device)

� IPv4: The most common form of IP addressing, consisting of four numbers

separated by periods (e.g., 192.168.1.1). It uses a 32-bit format, supporting about

4.3 billion unique addresses.

� IPv6: A newer IP format developed due to the limitations of IPv4 address space.

IPv6 uses a 128-bit format, providing a signi�cantly larger address space.

9

Public vs Private IP Addresses

� Public: Unique and accessible from outside the local network. Used for devices on

the internet.

� Private: Used within private networks (e.g., home or o�ce), not routable on the

internet. Examples include addresses in ranges like 192.168.0.0 to

192.168.255.255

� 127.0.0.1 is called localhost. It is a loopback address, telling the machine to

refer to itself

10

IPv4 Address structure

� Format: IPv4 addresses consist of four octets (e.g., 192.168.1.1), each

representing 8 bits, totaling 32 bits.

� Class A: Large networks, IP range 1.0.0.0 to 126.0.0.0

� Class B: Medium-sized networks, IP range 128.0.0.0 to 191.255.0.0

� Class C: Small networks, IP range 192.0.0.0 to 223.255.255.0.

� Network Portion: Identi�es the network to which the device belongs.

� Host Portion: Identi�es the speci�c device within that network.

11

Subnetting

� Method for dividing large networks into smaller, more manageable subnetworks

� A subnet mask is a 32-bit number that helps identify the network and host

portions of an IP address.

A 255.0.0.0 11111111.00000000.0000000.00000000

B 255.255.0.0 11111111.11111111.0000000.00000000

C 255.255.255.0 11111111.11111111.1111111.00000000

� CIDR Notation: Classless Inter-Domain Routing. Indicates the number of network

bits: 192.168.1.0/24, where /24 indicates 24 bits for the network portion

12

Subnetting Example

� Consider a network with the IP address range 192.168.1.0/24, which has 256

addresses.

� Task: Divide this range into four smaller networks

� 192.168.1.0/26 (addresses 0�63)

� 192.168.1.64/26 (addresses 64�127)

� 192.168.1.128/26 (addresses 128�191)

� 192.168.1.192/26 (addresses 192�255)

� Each subnet now has 64 addresses, suitable for smaller segments like o�ce �oors

or departments.

13

Packet Flow in Networks

Data packets

� A packet is a small, formatted unit of data transmitted over a network.

� Large �les are divided into packets to make data transmission more manageable,

e�cient, and resilient to network issues

� Structure:

� Header: Contains metadata like source and destination IP addresses, protocol

information, and error-checking data.

� Payload: The actual data being transmitted, which could be part of an email, �le, or

other information.

14

Packet creation and sending process

� Application Layer: The data starts at the application layer, where it's generated by

an application (e.g., an email client or web browser).

� Encapsulation: Each OSI layer from the transport layer down to the physical layer

adds information (like IP addresses, port numbers, and error-checking codes) as

the data moves downward.

� Segmentation and Packetization: The transport layer breaks the data into

segments, adds headers (e.g., TCP/UDP), and encapsulates each segment into

packets.

� Packet is Ready for Transmission: After packetization, the packet is passed to the

physical layer for transmission.

15

Packet Flow Through Network Devices

� Switches (Data Link Layer): When the packet arrives at a switch, the switch

checks its MAC address table to determine the correct path to the destination

within the same local network.

� Routers (Network Layer): Directs packets between di�erent networks based on IP

addresses. examines the destination IP address in the packet header to determine

the next best path toward the destination network. Routers use routing tables to

make these decisions.

� Firewalls: Security devices that monitor and control network tra�c based on

predetermined security rules. When a packet passes through a �rewall, it checks

the packet's headers against its rules to allow, block, or redirect the packet as

needed.

16

Packet arrival at the destination

� Physical Layer: The physical layer receives the incoming bits and passes them up

to the data link layer.

� Data Link Layer: Checks for errors and passes the frames up to the network layer.

� Network Layer: Veri�es the IP address to con�rm it matches the destination

device's IP, then passes the data up to the transport layer.

� Transport Layer: Reassembles segmented data using sequence numbers (for

protocols like TCP) to ensure packets are in the correct order and handles any

retransmissions if packets are missing.

� Application Layer: Delivers the fully reassembled and decapsulated data to the

receiving application.

17

Error checking

� Checksums and Cyclic Redundancy Checks (CRC): Each layer adds error-checking

data to verify the packet's integrity at the receiving end.

� Retransmission Requests: If errors are detected (e.g., missing or corrupted

packets), the transport layer (TCP) requests retransmission of those packets to

complete the data correctly.

18

Network Protocols

Network Protocols

� Transport layer protocols: TCP, UDP

� Internet Layer Protocols:

� IP

� ICMP: Internet Control Message Protocol. Used for error messages and network

diagnostics. ping and traceroute

� ARP: Address Resolution Protocol. Maps IP addresses to MAC addresses.

19

Application Layer Protocols

� HTTP/HTTPS: The protocol used for transmitting web pages. It's a

request-response protocol where the client requests resources, and the server

responds.

� FTP/SFTP: Used for transferring �les between a client and server

� SMTP :Simple Mail Transfer Protocol. Used to send emails

� POP3/IMAP: Used to retrieve emails

� DNS: Domain Name System. Translates human-readable domain names (e.g.,

www.example.com) into IP addresses that computers use. nslookup

20

Network port

� Port: logical endpoint used by the OS to direct network tra�c to the correct

application

� 16-bit number (ranging from 0 to 65535) used in conjunction with an IP address

to identify speci�c processes or services that a computer is running on a network

� Example: 192.168.2.10:80 is port 80 on host 192.168.2.10 (refers to the

HTTP server)

� 0-1023: Reserved for core services and protocols widely used across the internet

(HTTP, FTP, SSH, DNS, . . .)

� 1024-49151: Assigned to speci�c services or applications (MySQL, Docker, . . .)

� 49152�65535: Ephemeral ports used for temporary, short-lived connections.

21

Browsing a web page

When a user types a URL into a browser:

1. DNS (Domain Name System): The browser uses DNS to resolve the domain name

to an IP address.

2. TCP Connection Establishment: The browser initiates a TCP connection to the

server IP on port 80 (HTTP) or 443 (HTTPS).

3. HTTP/HTTPS Request: The browser sends an HTTP or HTTPS request to

retrieve the page.

4. Data Transmission: The server responds with the requested data, which is

packetized and sent back to the client.

5. Decapsulation and Display: The client receives, decapsulates, and reassembles the

data, displaying the web page to the user.

22

Exercises

Client-server program in Python and C

23

Server program in Python i

#!/usr/bin/env python

import socket, datetime # socket is used for network communication

now = datetime.datetime.now # Function that gets the current date and time

def main():

HOSTNAME = socket.gethostname() # Get the hostname of the server machine

PORT = 11279 # Define the port number for the server to listen on

print(now(), "I am the server : %s:%d"%(HOSTNAME,PORT))

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Create an IPv4 TCP socket

s.bind((HOSTNAME, PORT)) # Bind the socket to the hostname and port

s.listen() # Set the socket to listen for incoming connections

conn, addr = s.accept() # Block until a client connects, then return a new socket conn

print(now(), "Connected by", addr)

24

Server program in Python ii

data = "" # Initialize an empty string to store the received data

while True: # Start a loop to read incoming data from the client

message = conn.recv(8).decode('utf-8') # Read up to 8 bytes

print(now(), "Buffer : "+message)

data += message # Append the message to the data buffer

if len(message) < 8: # If received data is less than 8 bytes, break (end of connection)

break

print(now(), "Received data : ", data)

print(now(), "Sending thank you...")

conn.send("Thank you".encode()) # Send a response back to the client

conn.recv(1) # Wait until the client closes the connection

conn.close() # Close the connection to the client

if __name__ == "__main__": main()

25

Client program in Python i

#!/usr/bin/env python

import socket, datetime # socket is used for network communication

import sys, os # handle command-line arguments and system operations

now = datetime.datetime.now # Function that gets the current date and time

def main():

HOSTNAME = sys.argv[1] # Get the server hostname from the command line argument

PORT = int(sys.argv[2]) # Get the server port from the command line argument

print(now(), "The target server is : %s:%d"%(HOSTNAME,PORT))

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Create an IPv4 TCP socket

s.connect((HOSTNAME, PORT)) # Connect to the specified server at HOSTNAME and PORT

message = "Hello, world!!!!!!!"

print(now(), "Sending : "+message)

26

Client program in Python ii

s.send(message.encode()) # Encode the message as bytes and send it over the connection

data = s.recv(1024) # Receive up to 1024 bytes from the server's response

s.close() # Close the socket connection after receiving the server response

print(now(), 'Received: ', data.decode('utf-8'))

if __name__ == "__main__": main()

27

Server program in C i

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <arpa/inet.h>

#include <sys/socket.h>

#include <time.h>

#define BUFFER_SIZE 8

void print_current_time(const char *message) {

// Function to print the current time with a message

time_t now = time(NULL);

struct tm *t = localtime(&now);

printf("%04d-%02d-%02d %02d:%02d:%02d %s\n",

28

Server program in C ii

t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,

t->tm_hour, t->tm_min, t->tm_sec, message);

}

int main(int argc, char *argv[]) {

if (argc != 2) { // Ensure a port number is provided

fprintf(stderr, "Usage: %s <port>\n", argv[0]);

return 1;

}

int port = atoi(argv[1]); // Get the port number from the command line

int server_sock, client_sock;

struct sockaddr_in server_addr, client_addr;

socklen_t client_addr_size = sizeof(client_addr);

// Step 1: Create a socket

29

Server program in C iii

server_sock = socket(AF_INET, SOCK_STREAM, 0); // IPv4, TCP socket

if (server_sock == -1) {

perror("Socket creation failed");

return 1;

}

// Step 2: Bind the socket to the specified port

memset(&server_addr, 0, sizeof(server_addr));

server_addr.sin_family = AF_INET; // IPv4

server_addr.sin_addr.s_addr = INADDR_ANY; // Bind to any available network interface

server_addr.sin_port = htons(port); // Convert port to network byte order

if (bind(server_sock, (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0) {

perror("Bind failed");

close(server_sock);

return 1;

30

Server program in C iv

}

// Step 3: Listen for incoming connections

if (listen(server_sock, 5) < 0) { // Allow up to 5 queued connections

perror("Listen failed");

close(server_sock);

return 1;

}

print_current_time("Server is listening...");

// Step 4: Accept an incoming connection

client_sock = accept(server_sock, (struct sockaddr *)&client_addr, &client_addr_size);

if (client_sock < 0) {

perror("Accept failed");

close(server_sock);

31

Server program in C v

return 1;

}

print_current_time("Client connected");

// Step 5: Receive data from the client

char buffer[BUFFER_SIZE + 1]; // Buffer for incoming data (+1 for null-terminator)

char data[1024] = ""; // Buffer to store all received data

int bytes_received;

while ((bytes_received = recv(client_sock, buffer, BUFFER_SIZE, 0)) > 0) {

buffer[bytes_received] = '\0'; // Null-terminate the received chunk

print_current_time("Buffer received:");

printf("%s\n", buffer);

strncat(data, buffer, bytes_received); // Append buffer to data

if (bytes_received < BUFFER_SIZE) break; // End of transmission

}

32

Server program in C vi

if (bytes_received < 0) {

perror("Receive failed");

close(client_sock);

close(server_sock);

return 1;

}

print_current_time("Complete message received:");

printf("%s\n", data);

// Step 6: Send a response to the client

const char *response = "Thank you";

print_current_time("Sending thank you message...");

send(client_sock, response, strlen(response), 0);

// Step 7: Close the connections

33

Server program in C vii

bytes_received = recv(client_sock, buffer, 1, 0); // Ensure the client has disconnected

close(client_sock);

close(server_sock);

print_current_time("Server shut down");

return 0;

}

34

Client program in C i

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <arpa/inet.h>

#include <sys/socket.h>

#include <time.h>

void print_current_time(const char *message) {

// Function to print the current time with a message

time_t now = time(NULL);

struct tm *t = localtime(&now);

printf("%04d-%02d-%02d %02d:%02d:%02d %s\n",

t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,

t->tm_hour, t->tm_min, t->tm_sec, message);

35

Client program in C ii

}

int main(int argc, char *argv[]) {

if (argc != 3) { // Ensure hostname and port are provided

fprintf(stderr, "Usage: %s <hostname> <port>\n", argv[0]);

return 1;

}

const char *hostname = argv[1]; // Server hostname from command line

int port = atoi(argv[2]); // Server port from command line

// Step 1: Create the socket

int sock = socket(AF_INET, SOCK_STREAM, 0); // IPv4, TCP socket

if (sock == -1) {

perror("Socket creation failed");

return 1;

36

Client program in C iii

}

// Step 2: Define the server address structure

struct sockaddr_in server_addr;

memset(&server_addr, 0, sizeof(server_addr)); // Zero out the structure

server_addr.sin_family = AF_INET; // IPv4

server_addr.sin_port = htons(port); // Convert port to network byte order

// Step 3: Convert hostname to IP address and set it in server_addr

if (inet_pton(AF_INET, hostname, &server_addr.sin_addr) <= 0) {

perror("Invalid address or address not supported");

close(sock);

return 1;

}

// Step 4: Connect to the server

37

Client program in C iv

if (connect(sock, (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0) {

perror("Connection failed");

close(sock);

return 1;

}

print_current_time("Connected to the server");

// Step 5: Send a message to the server

const char *message = "Hello, world!!!!!!!";

print_current_time("Sending message: Hello, world!!!!!!!");

if (send(sock, message, strlen(message), 0) < 0) {

perror("Send failed");

close(sock);

return 1;

}

38

Client program in C v

// Step 6: Receive a response from the server

char buffer[1024];

int bytes_received = recv(sock, buffer, sizeof(buffer) - 1, 0);

if (bytes_received < 0) {

perror("Receive failed");

close(sock);

return 1;

}

buffer[bytes_received] = '\0'; // Null-terminate the received data

print_current_time("Received message:");

printf("%s\n", buffer); // Print the received message

// Step 7: Close the socket

close(sock);

39

Client program in C vi

print_current_time("Connection closed");

return 0;

}

40

	Introduction to Networking
	IP Addressing
	Packet Flow in Networks
	Network Protocols
	Exercises

