
Compilation and C

A. Scemama

21/11/2024

Laboratoire de Chimie et Physique Quantiques, Univ. Toulouse/CNRS

Introduction to hardware and

binary representation

Introduction

1

On/O�

On/O� switch

Binary notation

� 0: O�

� 1: On

Switch O� → Light O� f (0) = 0

Switch On → Light On f (1) = 1

The light is on is true if the switch is on is

true.

2

NOT Gate

NOT Gate

Binary notation

Switch O� → Light On

Switch On → Light O�

� not(0) = ¬0 = 1

� not(1) = ¬1 = 0

The light is on is true if the switch is on is

false.

3

OR gate

OR gate

Binary operation

� or(0, 0) = 0 ∨ 0 = 0

� or(0, 1) = 0 ∨ 1 = 1

� or(1, 0) = 1 ∨ 0 = 1

� or(1, 1) = 1 ∨ 1 = 1

The light is on is true if either

switch A is on or switch B is on is

true.

4

AND gate

AND gate

Binary operation

� and(0, 0) = 0 ∧ 0 = 0

� and(0, 1) = 0 ∧ 1 = 0

� and(1, 0) = 1 ∧ 0 = 0

� and(1, 1) = 1 ∧ 1 = 1

The light is on is true if both

switch A is on and switch B is on

are true.

5

NAND gate

NAND gate: Not And
Binary operation

� nand(0, 0) = ¬(0 ∧ 0) = 1

� nand(0, 1) = ¬(0 ∧ 1) = 1

� nand(1, 0) = ¬(1 ∧ 0) = 1

� nand(1, 1) = ¬(1 ∧ 1) = 0

The light is on is false if both

switch A is on and switch B is on

are true.

Any logic function can be

implemented using only NAND

gates.
6

XOR gate

XOR gate: Exclusive OR

Binary operation

� xor(a, b) = (a∧¬b)∨ (¬a∧b)

� Either a or b is true, but not

both

7

XOR gate

XOR gate: Exclusive OR

Binary operation

A B C

0 0 0

1 0 1

0 1 1

1 1 0

8

XOR gate

XOR gate: Exclusive OR

Binary operation

A B C

0 0 0

1 0 1

0 1 1

1 1 0

9

XOR gate

XOR gate: Exclusive OR

Binary operation

A B C

0 0 0

1 0 1

0 1 1

1 1 0

10

XOR gate

XOR gate: Exclusive OR

Binary operation

A B C

0 0 0

1 0 1

0 1 1

1 1 0

11

Decimal format

� Each digit has 10 possibilities: 0-9

� 74362 = 7× 104 + 4× 103 + 3× 102 + 6× 101 + 2× 100

10� 4 3 2 1 0

i× 7 4 3 6 2

12

Binary format

� Each digit has 2 possibilities: 0,1

� 74362 = 216+213+29+26+25+24+23+21 = 65536+8192+512+64+32+16+8+2

2� 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i× 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0

13

How to add two binary numbers?

1011 + 11 = ?

1 1

1 0 1 1

+ 1 1

1 1 1 0

0 + 0 0

1 + 0 1

0 + 1 1

1 + 1 0 carry the 1

xor and

Hardware

� Half-adder:

� 2 inputs (bits)

� 2 outputs (sum and carry)

� One XOR and one AND gates

� Full adder:

� 3 inputs (2 bits and one carry)

� 2 outputs (sum carry)

� 2 Half adders and an OR gate

14

How to subtract two binary numbers?

Introduce negative numbers using 2's complement

� The most signi�cant is the sign bit (0: positive, 1: negative)

� Swap each bit (NOT gate), and then add 1:

� 01101 = 13

� −01101 = −13 −→ 10010+ 1 = 10011

000 001 010 011 100 101 110 111

Unsigned integer 0 1 2 3 4 5 6 7

Signed integer 0 1 2 3 -4 -3 -2 -1

15

How to subtract two binary numbers?

To subtract, add the negative number

� Number of bits has to be kept �xed

� Using 5-bits: 1011− 11 = 1000 = 01011+ 11101

0 1 0 1 1

+ 1 1 1 0 1

0 1 0 0 0

� Using 5-bits: 11− 1011 = −1000 = 00011+ 10101

0 0 0 1 1

+ 1 0 1 0 1

1 1 0 0 0

� 11000 → −(00111+ 1) = −01000 = −8

16

Hexadecimal format

� A compact way to write binary format

� Pack bits by groups of 4 =⇒ 16 possibilities

� Represent each group of 4 in base 16 : 0-9, a-f

Example: 363845035 = 00010101101011111101010110101011

0001 0101 1010 1111 1101 0101 1010 1011

1 5 10 15 13 5 10 11

1 5 a f d 5 a b

363484587 = 0x15afd5ab

17

How to store a bit?

Consider this circuit

� Two inverters (NOT gates):

� Redraw as:

18

How to store a bit?

� This circuit is not programmable

� An extra input is needed to control if we store a 1 or a 0

� NAND Gates

A B nand(AB)

0 0 1 If A=0, nand(AB)=1

0 1 1

1 0 1 If A=1, nand(AB)=¬B
1 1 0

19

How to store a bit?

20

How to store a bit?

Input (0,1)

NAND Truth table

A B AB

0 0 1

0 1 1

1 0 1

1 1 0

Sets stored value to (1,0)

21

How to store a bit?

Input (1,1)

NAND Truth table

A B AB

0 0 1

0 1 1

1 0 1

1 1 0

Keeps (1,0) stored

22

How to store a bit?

Input (1,0)

NAND Truth table

A B AB

0 0 1

0 1 1

1 0 1

1 1 0

Sets stored value to (0,1)

23

How to store a bit?

Input (1,1)

NAND Truth table

A B AB

0 0 1

0 1 1

1 0 1

1 1 0

Keeps (1,1) stored

24

How to store a bit?

The SR-Latch

S̄ R̄ Q Q̄

0 0 - -

0 1 1 0 Sets Q to 1

1 0 0 1 Resets Q to 0

1 1 Q Q̄ Stored state

Q is the stored value

25

Registers

� Very fast memory on the CPU

� Data used for arithmetic operations (data registers, operands)

� Data used for memory (address registers)

� Data used to control the execution of a program (instruction registers)

� . . .

Example: C = A + B

� A is stored in a 64-bit register

� B is stored in a 64-bit register

� Both registers give their data as inputs to the adder circuit

� The result is stored in a 64-bit register C (which can be the same as A or B, or

another one)

26

Summary

� One bit corresponds to an on/o� state

� Numbers can be represented by arrays of bits

� Operations on numbers can be performed by combining logic gates

� Numbers can be stored in registers

27

Data Representation

Types

Take the following sequence of bits: 1011010011101011.

I can decide to interpret it as:

� A 16-bit unsigned integer:

215 + 213 + 212 + 210 + 27 + 26 + 25 + 23 + 21 + 20 = 46315

� A 16-bit signed integer: −19221
� Two 8-bit unsigned integers: (10110100, 11101011) = (180, 235)

� Two characters : (', ë)

The Type indicates how to interpret a sequence of bits.

28

Real numbers

� R is continuous: Real numbers require an in�nite number of bits =⇒ they can't be

represented

� We use a discretization of the real numbers (a "grid of points")

� To each 32-bit (or 64-bit) integer we associate a 32-bit (or 64-bit) �oating point

number

� Regular grid:

� We choose a minimum and maximum value: range = [xmin, xmax[)

� Each 1-bit increment adds δ = xmax−xmin

N+1
, where N is the largest representable integer

� The binary number n corresponds to the value xmin + n × δ

29

Rational numbers

Fixed-point numbers

� Integer multiplied by a scaling factor 2−m

� m is the number of fraction bits

Characteristics

� If the range is chosen to be large, the precision is low

� If the range is chosen to be small, the precision is high

� Can't be used to represent both huge and tiny numbers
30

Rational numbers

Floating point representation

� A non-uniform grid:

� A binary equivalent of scienti�c notation

� Example: -6.63821E+04

� Use some bits to store 663821

� Use some bits to store +04

� Use a bit to store the sign

31

IEEE-754 Format

32-bit �oating-point (FP32, single-precision)

� 1 bit: sign (S)

� 8 bits: exponent (E)

� 23 bits: fraction (F)

−1S × 2E−127 ×
(
1+

∑23
i=1 F23−i × 2−i

)
� S = 0, E = 01111100 = 124, F = 2097152

� −10 × 2124−127 ×
(
1+ 2−2

)
= 0.15625

32

IEEE-754 Format

64-bit �oating-point (FP64, double-precision)

� 1 bit: sign (S)

� 11 bits: exponent (E)

� 52 bits: fraction (F)

33

IEEE-754 Format

Special values

� Smallest FP32: 1.1754943508 Ö 10-38

0 00000001 00000000000000000000000

� Smallest FP64: 2.2250738585072014 10-308

0 00000000001 00

� Largest FP32: 3.4028234664 Ö 10+38

0 11111110 11111111111111111111111

� Largest FP64:= 1.7976931348623157 10+308

0 11111111110 11

34

IEEE-754 Format

Special values

� Smallest FP32 larger than one: 1.00000011920928955

0 01111111 00000000000000000000001

� Smallest FP64 larger than one: 1.0000000000000002

0 01111111111 0001

� 0 00000000 00000000000000000000000 = +0

1 00000000 00000000000000000000000 = −0
� 0 11111111 00000000000000000000000 = +∞
1 11111111 00000000000000000000000 = −∞

� Not a number (NaN): Result of
√
−3.0

0 11111111 00000000000000000000001 = sNaN

0 11111111 10000000000000000000001 = qNaN
35

Bits/Bytes

� 1 byte (B) = 1 octet (o) = 8 bits (b)

� An ASCII character is encoded in 1 byte

� A 64-bit double precision number uses 8 bytes.

� Disk capacity or RAM is usually expressed in bytes

� Speed of disk or memory is usually expressed in bytes/second

� Network speed is usually expressed in bits/second (10Gb Ethernet)

� kilo, mega, giga, tera, peta, exa, zetta, . . .

� Often, instead of using 103, we use 210=1024

� 1kb: one kilobit = 1000 bits

� 1kB: one kilobyte = 8000 bits

� 1KiB: one kibibyte = 1024 bytes = 8192 bits

� 1MB: one megabyte = 10002 bytes = 8 000 000 bits

� 1MiB: one mebibyte = 10242 bytes = 8 388 608 bits

36

Summary

� The type tells us how to interpret bytes

� All the calculations made by a computer use a discretization of real numbers

� There is a �nite number of �oats used to describe real numbers

� There is a one-to-one mapping between the integers and �oats

� Each operation (add, multiply, . . .) has a rounding error

37

Von Neumann Architecture

Von Neumann architecture

� Both program instructions and data are stored in memory

� Consequences:

� Simpler hardware design

� Programs can be created by other programs (compilers)

� Scripting languages

38

Von Neumann architecture

Central Processing Unit (CPU)

Arithmetic/Logic Unit (ALU)

Random Access Memory (RAM)

Control Unit (CU)

Output

Input

� ALU: Performs bitwise or arithmetic operations

� Control unit: Decodes instructions fetched from

memory and controls the �ow of data within

the CPU

� Instruction cycle

� Fetch: Retrieve the next instruction from

memory.

� Decode: Interpret the instruction.

� Execute: Carry out the operation, which

could involve the ALU or memory access.

39

Memory

Random Access Memory (RAM)

� Stores both data and instructions for access by the CPU

� Organized as a large array of cells, where each cell holds a small unit of data,

typically one byte (8 bits)

� Each cell has a unique address: like a �house number� that speci�es the exact

location of the data within the memory space

40

Memory read and write

� To read the data stored at address 0xde102f:

� the CPU sends this address over the address bus to the memory controller

� the memory controller then retrieves the value from the cell at address 0xde102f

and sends it back to the CPU.

� To write data to memory:

� the CPU sends the data along with the address of the memory cell where the data

should be stored

41

Summary

In Von Neumann architecture, code and data are stored in the same memory

42

Programs

What is a program ?

� A program is a sequence of instructions

� Each instruction is encoded in a binary format (machine language):

00101000 10001001 11001000

Opcode Operand 1 Operand 2

43

Instructions

� Set a register to a constant

� Copy data from memory to a register (or backwards)

� Read/Write from hardware devices

� Add, subtract, multiply, divide the value of 2 registers, storing the result in a

register

� Bitwise logic operations

� Comparisons: <, >, =

� Floating-point instructions

� Conditional branch (if statement)

� Call another block of code (function call)

� . . .

44

Instruction sets

� Instruction Set Architecture: De�nes the mapping between instructions and their

binary format

Binary 00101000 10001001 11001000

Human-readable mov %rax %rcx

� Two CPUs using the same ISA are binary-compatible

� Intel and AMD CPUs use the x86 ISA: (x86_64, amd64, Intel64)

� Smartphones and recent Apple CPUs use the ARM ISA

45

x86_64 ISA

Instruction sets evolve over time

� 2004: SSE, SSE2 (128-bit FP vectorization)

� 2008: SSE4.2, SSE3, SSSE3

� 2011: AVX (256-bit FP vectorization, 3 operands)

� 2013: AVX2 (FMA)

� 2015: AVX-512 (512-bit FP vectorization)

� 2019: AVX-512 VNNI (Vector Neural Networks Instructions)

� 2020: AVX-512 BF16 (lower-precision b�oat16 �oating-point numbers)

46

Assembly

Assembly language is the human-readable form of machine language

Polynomial a x2 + b x + c in x86_64 assembly:

f2 0f 59 c3 mulsd %xmm3,%xmm0 ; x*a -> a

f2 0f 59 c3 mulsd %xmm3,%xmm0 ; x*a -> a

f2 0f 59 d9 mulsd %xmm1,%xmm3 ; b*x -> x

f2 0f 58 c3 addsd %xmm3,%xmm0 ; x+a -> a

f2 0f 58 c2 addsd %xmm2,%xmm0 ; c+a -> a

c3 ret ; returns a

%xmm0: a %xmm1: b %xmm2: c %xmm3: x

47

High/low level

48

Summary

� A program is a sequence of instructions

� Di�erent hardware may use di�erent ISA

� Assembly is a human-friendly way to write binary code

49

The C compiler

Compiler

Compiler
Computer program that translates computer code written in one programming language

(the source language) into another language (the target language).

Examples

Compiler Source Target

NASM x86 Assembly Machine Language

GCC C Machine Language

ICX C Machine Language

Gfortran Fortran Machine Language

F2C Fortran C

objdump Machine Language Assembly

JavaC Java Java Bytecode

JSofOCaml OCaml Javascript 50

Does it make sense to say "a language is fast"

� No:

� A language is not fast: only machine code is

executed.

� One compiler for this language produces

e�cient machine code.

� Yes:

� Some languages are designed in such a way

that compilers can produce very e�cient code

� Interpreted languages (Bash, Python, Ruby)

are slower than compiled languages

51

Stages of compilation

Four main stages:

1. Preprocessing: text substitutions performed in the source code.

2. Compilation

3. Assembly

4. Linking

52

Stages of compilation

Four main stages:

1. Preprocessing: text substitutions performed in the source code.

2. Compilation

3. Assembly

4. Linking

53

Preprocessing

� gcc -E outputs the preprocessed source �le

Directives

� #include: Inserts the content of a �le

� #define: De�nes a macro

� #ifdef, #elif#, #else, #endif: Conditional compilation

� #error, #warning: User-de�ned warnings and errors

54

#include

#include <stdio.h>

int main(void)

{

printf("Hello World!\n");

return 0;

}

� #include: Inserts the content of the �le

stdio.h, which contains the de�nition of the

printf function

� #include <...>: Search for the �le into the

default locations (/include, /usr/include,

C_INCLUDE_PATH, CPATH, gcc

-I/path/to/includes)

� #include "...": Look for a user-de�ned �le

in the local project

55

Macros

PI is replaced with 3.141592653589793 before the actual compilation

#define PI 3.141592653589793

float circumference = 2. * PI * radius;

// float circumference = 2. * 3.141592653589793 * radius;

#define A(i,j) a[(i)+(j)*n]

#define B(i,j) b[(i)+(j)*n]

for (int j=0 ; j<n ; j++) {

for (int i=0 ; i<n ; i++) {

A(i,j) = A(i,j) + B(j,i);

// a[(i)+(j)*n] = a[(i)+(j)*n] + b[(j)+(i)*n]

}

}
56

Conditional compilation

� Selects which branch to insert in the source code

#ifdef FAST

x = fast_version_of_f(a,b,c);

#else

x = slow_version_of_f(a,b,c);

#endif

#if DEBUG >= 2

printf("x = %f\n", x);

#endif

� Macros can be de�ned by #define, or from the compilation command line: gcc

-DFAST de�nes the FAST macro

57

Stages of compilation

Four main stages:

1. Preprocessing: text substitutions performed in the source code.

2. Compilation

3. Assembly

4. Linking

58

Compilation

� Checks for syntax errors

� Translate the preprocessed source code into assembly language

� Three-stage Compiler structure

� To generate an assembly �le, use gcc -S example.c -o example.s

59

Stages of compilation

Four main stages:

1. Preprocessing: text substitutions performed in the source code.

2. Compilation

3. Assembly

4. Linking

60

Assembly

� Converts the assembly code into the binary format

� The produced �le is an object �le (e.g., example.o)

� .data: Initialized data

� .bss: Uninitialized data

� .rodata: Read-only data (constants)

� Symbol table:

� De�ned Symbols: Symbols that are declared in the current �le, such as function

names or global variables.

� Unde�ned Symbols: Symbols that are used in the current �le but de�ned elsewhere

(e.g., in a di�erent source �le or a library).

� Relocation information: Information needed by the linker to adjust addresses and

references when combining multiple object �les

� Debugging information: identi�ers for functions, variables, etc.

� gcc -c produces an object �le

61

Stages of compilation

Four main stages:

1. Preprocessing: text substitutions performed in the source code.

2. Compilation

3. Assembly

4. Linking

62

Linking

� Combines multiple object �les and libraries into a single executable

� Symbol Resolution: The linker resolves symbols, which are references to variables

or functions de�ned in di�erent �les.

� Address Binding: The linker assigns memory addresses to variables and functions

and resolves external references to ensure everything points to the right location in

the executable.

� Static Linking: Libraries are combined into the executable, resulting in a larger �le

that is self-contained.

� Dynamic Linking: The executable relies on external shared libraries (e.g., .so or .dll

�les), making the �le smaller but dependent on these libraries at runtime.

63

Summary

Why use a Compiler?

� Because we don't want to write

assembly

� The compilers can now produce more

e�cient assembly than humans

� We want our code to be

architecture-independent

Origins

� Gcc is written in C, ocamlc is written

in OCaml, the rustc compiler is written

in Rust, . . . How did the �rst compiler

emerge?

64

Exercise

� Write the following function in a �le dot.c

#include <stdlib.h>

double my_dot_product(double* A, double* B, size_t n) {

double result = 0.0;

for (size_t i = 0; i < n; i++) {

result += A[i] * B[i];

}

return result;

}

� Transform it into assembly code using

gcc -O0 -S -fverbose-asm dot.c -o dot_gcc_O0.S

gcc -O3 -S -fverbose-asm dot.c -o dot_gcc_O3.S

gcc -O3 -march=native -S -fverbose-asm dot.c -o dot_gcc_O3_native.S

icx -O3 -march=native -S -fverbose-asm dot.c -o dot_icc_O3_native.S

� Look at the di�erent assemblies produced
65

Introduction to the C

programming language

Hello World

� Create the �le hello.c

#include <stdio.h>

int main() {

printf("Hello, World!\n");

return 0;

}

� Compile the �le using gcc, and run the

program

gcc hello.c -o hello

./hello

� main(): Main function, entry point of

the program

� printf(): Formatted print to the

standard output

� #include <stdio.h>: Required for

printf

� return 0: Successful execution return

code

66

Hello World

$./hello && echo Success || echo Failed with code $?

Hello, World!

Success

Change return 0 into return 2

$./hello && echo Success || echo Failed with code $?

Hello, World!

Failed with code 2

67

Comments

� A comment is a piece of text that is ignored by the compiler

� Used to explain code, and to make it more readable

� Single-line comments start with two forward slashes (//)

� Multi-line comments start with /* and end with */.

68

Variables and Data types

Basic data types

Type Description

int signed integer able to represent at least [-32767 ; +32767]

unsigned int unsigned integer able to represent at least [0 ; +65535]

long at least [-2147483647 ; +2147483647]

long long at least [-9223372036854775807; +9223372036854775807]

size_t unsigned integer large enough to count bytes

float 32-bit �oating point

double 64-bit �oating point

char 8-bit character

69

Variables and Data types

Fixed-width integers

� De�ned in <stdint.h>

� int8_t, int16_t, int32_t, int64_t: 8-, 16-, 32-, 64-bit wide signed integers

� uint8_t, uint16_t, uint32_t, uint64_t: 8-, 16-, 32-, 64-bit wide unsigned

integers

70

Variables and Data types

Boolean variables

� 0 evaluates to false

� Non-zero evaluates to true

� Equality: ==, non-equality: !=

� Comparison <, >, <=, >=

� Negation: !

� Logical and : &&, or: ||

� Short-circuit:

� && stops evaluating at the �rst false expression

� || stops evaluating at the �rst true expression

71

Variables and Data types

Example

#include <stdio.h>

int main() {

int a = 5;

float b = 3.14;

char c = 'A';

double d = 2.71828;

printf("a=%d; b=%f; c=%c; d=%f\n", a, b, c, d);

return 0;

}

72

Types conversion

Exercise: Check the output of the following program

#include <stdio.h>

int main() {

int a = 5;

float b = 5.;

printf("a as int : %d\n", a); // Good

printf("a as float: %f\n", a); // Bad

printf("b as float: %f\n", b); // Good

printf("b as int : %d\n", b); // Bad

// With type conversions

printf("a converted to float: %f\n", (float) a);

printf("b converted to int : %d\n", (int) b);

return 0;

} 73

Printf

� See man 3 printf

� \n : End of line character

� Modi�ers:

Speci�er Data Type Example

%d int printf("%d", 42);

%u unsigned int printf("%u", 42);

%f float printf("%f", 3.14);

%lf double printf("%f", 3.14);

%c char printf("%c", 'A');

%s String printf("%s", "Hello");

%x unsigned integer (hexadecimal) printf("%x", 255);

%p Pointer address printf("%p", &variable);
74

Printf

Precision and Field Width Modi�ers

� Field Width: minimum number of characters to print

printf("%5d", 42); // Output: " 42" (padded with spaces)

� Precision: number of digits to display after the decimal point for �oating-point

numbers.

printf("%.2f", 3.14159); // Output: "3.14"

� Syntax: %[width].[precision][specifier]

printf("%8.3f", 3.14159); // Output: " 3.142" (width: 8, prec: 3)

75

Scanf

� scanf is similar to printf, but for reading data

� It takes a format string that speci�es the type of input values to read in:

#include <stdio.h>

int main() {

int a;

double b;

printf("Input an integer and a double: ");

scanf("%d %lf", &a, &b);

printf("Read : %d %lf\n", a, b);

return 0;

}

� We will see later on why a & symbol precedes the variable names in scanf.

76

Basic arithmetic operations

#include <stdio.h>

int main() {

int a = 5; int b = 3; int c; double d;

c = a+b; // Add

printf("%d = %d + %d\n", c, a, b);

c = a/b; // Integer Division

printf("%d = %d / %d\n", c, a, b);

c = a%b; // Modulo

printf("%d = %d %% %d\n", c, a, b);

d = (double) a / (double) b; // FP division

printf("%f = %d / %d\n", d, a, b);

return 0;

}

77

Binary operators

� << Shift left

� >> Shift right

� & Binary and

� | Binary or

� ~ Binary not

� ^ Binary xor

// 4 (100) shifted right 2 times = 001

printf("%x %x\n", 4, 4 >> 2); // 4 1

// 1 (001) shifted left 2 times = 100

printf("%x %x\n", 1, 1 << 2); // 1 4

printf("%x %x %x\n", 5, 3, 5 & 3); // 5 3 1

printf("%x %x %x\n", 2, 4, 2 | 4); // 2 4 6

printf("%x %x\n", 6, ~6); // 6 fffffff9

78

Incrementation

� i+=1: increments i by 1

� i+=k: increments i by k

� i-=k: decrements i by k

� i++: post-increments i by 1

� i--: post-decrements i by 1

� ++i: pre-increments i by 1

� --i: pre-decrements i by 1

int i = 5;

int result = i++;

// result is assigned 5, then i becomes 6

int i = 5;

int result = ++i;

// i becomes 6 first, then result is assigned 6

79

Conditionals

if (boolean_expression_1) {

/* true body 1 */

}

else if (boolean_expression_2) {

/* true body 2 */

}

else {

/* false body */

}

80

Conditionals

#include <stdio.h>

int main() {

int number = 10;

if (number > 5) {

printf("Number is greater than 5\n");

} else {

printf("Number is not greater than 5\n");

}

return 0;

}

81

While loop

#include <stdio.h>

int main() {

int number = 5;

while (number < 10) {

printf("Number is %d\n", number);

number++;

}

return 0;

}

82

For loop

for (initialization; condition; update) {

/* Code to be executed in each iteration */

}

� Initialization: Sets the starting value of the loop control variable. This step is

executed once, before the loop begins.

� Condition: Evaluates whether the loop should continue running. If the condition is

true, the loop executes; if false, the loop terminates.

� Update: Modi�es the loop control variable after each iteration. This step happens

at the end of each loop cycle.

83

For loop

#include <stdio.h>

int main() {

for (int i = 0 ; i < 5 ; i++) {

printf("i = %d\n", i);

}

return 0;

}

� int i = 0: Declares a local integer variable i, initialized equal to zero

� i < 5: if i<5 is true, iterate

� i++: Increment i at the end of each iteration

� A for loop can be exited before the termination condition is reached with the

break statement

84

For loop

Exercise:

� Write a program that displays the prime numbers in the [0;200] range

85

For loop (Solution)

#include <stdio.h>

int main() {

for (int num=2 ; num<201 ; num++) { // 0 and 1 are not prime numbers

int is_prime = 1; // Assume num is prime until proven otherwise

for (int i = 2; i < num; i++) { // Check for divisors

if (num % i == 0) {

is_prime = 0; // num has a divisor >=2

break; // Exit loop over i

}

}

if (is_prime) {

printf("%d\n", num);

}

}

} 86

Functions

#include <stdio.h>

double divide(int a, int b) {

return (double) a / (double) b;

}

int main() {

double c = divide(3, 4);

printf("divide(3,4) = %f\n", c);

return 0;

}

� divide has to be speci�ed before it is used

� The arguments (3,4) are copied into variables a and b (pass by value)
87

Functions

#include <stdio.h>

double divide(int a, int b); // Function Prototype

int main() {

double c = divide(3, 4);

printf("divide(3,4) = %f\n", c);

return 0;

}

double divide(int a, int b) { // Function defined after being used

return (double) a / (double) b;

}

88

Functions

my_program.c

#include <stdio.h>

// Function Prototype:

double divide(int a, int b);

int main() {

double c;

c = divide(3, 4);

printf("divide(3,4) = %f\n", c);

return 0;

}

divide.c

double divide(int a, int b) {

return (double) a / (double) b;

}

Compile as:

gcc -o divide my_program.c divide.c

89

Functions

my_program.c

#include <stdio.h>

#include "my_arith.h"

int main() {

double c;

c = divide(3, 4);

printf("divide(3,4) = %f\n", c);

return 0;

}

divide.c

double divide(int a, int b) {

return (double) a / (double) b;

}

my_arith.h

double divide(int a, int b);

Compile as:

gcc -o divide my_program.c divide.c

90

Back to compilation

Compiling multiple �les

� Generate the executable

gcc -o divide my_program.c divide.c # produces divide

� First generate objects, then link

gcc -c my_program.c # produces my_program.o

gcc -c divide.c # produces divide.o

gcc my_program.o divide.o # produces divide

� Compiling �les into objects:

� Recompiling only what has changed

� Simultaneous compilation of independent �les =⇒ speed

91

Example

� Similarly to divide.c, we can create add.c, subtract.c, and multiply.c

add.c

double add(int a, int b) {

return (double) a + (double) b;

}

subtract.c

double subtract(int a, int b) {

return (double) a - (double) b;

}

divide.c

double divide(int a, int b) {

return (double) a / (double) b;

}

multiply.c

double multiply(int a, int b) {

return (double) a * (double) b;

}

92

Example

� In the header �le my_arith.h, we insert the prototypes of all the functions, with

some comments explaining what the functions do:

double divide (int a, int b);

// Returns the FP-division of a and b

double add (int a, int b);

// Returns the FP-addition of a and b

double subtract (int a, int b);

// Returns the FP-subtraction of a and b

double multiply (int a, int b);

// Returns the FP-multiplication of a and b

93

Example

� In the main �le, #include "my_arith.h"

� Compile all the �les into objects, and link them:

#!/bin/bash

SOURCE_FILES="add.c subtract.c multiply.c divide.c my_program.c"

OBJECT_FILES=${SOURCE_FILES//.c/.o}

for FILE in $SOURCE_FILES ; do

gcc -c $FILE

done

gcc -o my_program $OBJECT_FILES

94

Dependencies

divide.o

divide.c

add.o

add.c

subtract.o

subtract.c

multiply.o

multiply.c

my_program.o

my_program.c my_arith.h

my_program

95

Make�le

We can create a Make�le:

CC=gcc

SRC=add.c subtract.c multiply.c divide.c my_program.c

OBJ=$(patsubst %.c, %.o, $(SRC))

my_program: $(OBJ)

$(CC) -o my_program $(OBJ)

%.o: %.c # All .o files depend on the corresponding .c file

$(CC) -c $< # $< is the name of the .c file

my_program.o: my_arith.h my_program.c

96

Make�le

� Syntax:

target: list of dependencies

command

� Running the make command will compile all the �les in the correct order, and link

the objects.

� If a �le is modi�ed, only what is necessary will be recompiled

� Try the following with the Make�le of the previous slide

make

make

touch add.c ; make

touch my_arith.h subtract.c ; make

97

Static Library

A library is a binary �le that contains a collection of functions.

Let's create a static library:

ar rcs libmy_arith.a add.o subtract.o multiply.o divide.o

� ar (archive) bundles multiple object �les into a static library libmy_arith.a

� r: Inserts or replaces the object �les into the archive

� c: Creates the library if it does not exist.

� s: Generates an index for faster linking.

98

Static Library

� Compile the code with the library:

gcc my_program.c libmy_arith.a

or

gcc my_program.c -L. -lmy_arith

� -L.: Search libraries in the current directory

� -lmy_arith: link with library named libmy_arith.a

� The library and the main program are now linked together, as before

99

Shared Library

Let's create a shared (or dynamic) library:

� Compile the source �les with the -fPIC (Position-Independent Code) option.

for FILE in add.c subtract.c multiply.c divide.c ; do

gcc -fPIC -c $FILE

done

� Link with the -shared option, and the .so su�x

gcc -shared -o libmy_arith.so add.o subtract.o multiply.o divide.o

100

Shared Library

� Compile the code with the library:

gcc my_program.c -L. -lmy_arith

� -L.: Search libraries in the current directory

� -lmy_arith: link with library named libmy_arith.so

� The library is not embedded in the program, but stays separated. It will be loaded

dynamically when the program executes.

� When the program is executed, it will search for libmy_arith.so in the default

system paths (/lib, /usr/lib, . . .) and in the LD_LIBRARY_PATH environment

variable.

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD

./my_program

101

Shared Library

� You can put all your dynamic libraries in a special location ($HOME/.local/lib)

and add export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.local/lib to

your ~/.bashrc �le.

� As the library functions are not copied inside the exectuable, it is possible to

update the library without recompiling the binary

102

Shared Library application 1

� Modify the divide function to handle division by zero

� Recompile the library:

gcc -fPIC divide.c

gcc -shared -o libmy_arith.so add.o subtract.o multiply.o divide.o

� Run again the code

� If you have multiple codes linked with libmy_arith.so, all of them will be

updated automatically

103

Shared Library application 2

� You create a program that can make a plot of any function de�ned as

double to_plot(double x);

� You let the users write the function to_plot into a shared library

� They can now use your code to plot their function, without recompiling your code

104

Shared Library application 3

� Your code uses the Zlib library for compression

� A security breach was found in Zlib, and the developers release an important

update a�ecting important services

� So you update your system

� Your program will now use the updated library, without the need to recompile

105

Summary

� Di�erent functions can be put in di�erent �les

� Make�les can handle dependencies in compilation to recompile only what is

necessary

� Functions can be grouped into libraries for re-use in other programs

106

Back to C

Pointers

� A pointer is a variable that contains as its value the memory address of another

variable.

� The type of a pointer variable is the type of the data it points to followed by a * :

a pointer to an int variable has type int*

� The address of a variable is obtained with the & operator (reference): &a denotes

the address of variable a

� To get the value a pointer points to, we use the * (dereference) operator: *b

returns the value stored at address contained in pointer b

� The NULL value points to the address 0x0, which is invalid. It is often used to

specify that a pointer points to nothing

� Pointing to an invalid address generates a Segmentation Fault

107

Pointers examples

int var = 10;

int* ptr = &var;

printf("%d", var); // Outputs the value of var (10)

printf("%p", &var); // Outputs the memory address of var (0x7ffe5367e044)

printf("%p", ptr); // Outputs the value of ptr (0x7ffe5367e044)

printf("%d", *ptr); // Outputs the value pointed by ptr (10)

108

Arrays

� An array is a collection of values with the same data type.

� It is declared using the [] operator

� The m-th element of the array has index i=m-1 and is accessed using [i]

double v[3];

for (int i=0 ; i<3 ; i++) {

v[i] = (double) i / 3.;

printf("v[%d] = %f\n", v[i]);

}

� Warning: The �rst element is v[0] and the last element is v[2]

109

Arrays

� Initialization:

double v[3] = {1.0, 2.0, 3.0}; double v[] = {1.0, 2.0, 3.0};

� In memory, the values of an array are stored in contiguous addresses: &v[i] =

&v[i-1] + 1

� The array name alone is equivalent to the address of the array: &v[0] == v

double v[3]; double *p = v;

for (int i=0 ; i<3 ; i++) {

v[i] = (double) i / 3.;

printf("v[%d] = %f\n", *(p+i));

}

� Adding an integer n to a pointer p of type t* increments the address by

n*sizeof(t) bytes
110

2-dimensional arrays

� It is an array of arrays:

int arr[2][4] = {

{10, 11, 12, 13},

{14, 15, 16, 17}

};

� arr is an array with 2 elements, each one being an int array with 4 elements

� arr[i][j] picks the (j-1)-th element of array arr[i], which is the (i-1)-th

element of array arr

� As arrays are stored with contiguous addresses:

{{10, 11, 12, 13}, {14, 15, 16, 17}} == {10, 11, 12, 13, 14, 15, 16, 17};

111

Row/column major

� In a matrix, Aij represents the element of row i and column j

� When matrices are stored in 2D-arrays, we often decide that a[i][j] = Aij

� In that case, the rows of the matrices are contiguous in memory, and the matrix is

stored with row-major ordering

� Row-major ordering is natural in C, while column-major ordering is natural in

Fortran

112

Strings

� Strings are arrays or characters, terminated with a NULL character ('\0')
� The size of a string needs to be dimensioned with one more character for the

NULL character

char[] mystring = "hello";

� Copying a string is not as simple as a=b. Use strncpy.

113

Memory layout

Memory is divided into several regions with distinct purposes:

� Code Segment: Stores the program's compiled instructions (read-only).

� Global/Static Segment: Stores global and static variables.

� Stack: Stores function-local variables and manages function calls.

� Heap: Used for dynamically allocated memory during runtime.

114

The stack

The Stack: A region of memory that stores temporary data for function calls.

� Holds local variables and function parameters

� Each function call creates a new stack frame for its variables

� Automatically Managed: Memory is allocated and deallocated automatically as

functions are called and return

� Fixed Size: Limited by system settings; can lead to a stack over�ow if too large

115

The heap

The Heap: A region of memory used for dynamic memory allocation.

� Allows �exible memory management with malloc and free functions

� Suitable for variables whose size or lifetime is not known at compile time

� Manually Managed: The programmer must allocate and free memory

� Flexible Size: Limited by the system's available memory, but improper

management can cause memory leaks

116

Memory allocation on the heap

� The malloc system call asks the system to allocate a block of memory

� The argument of malloc is a number of bytes (of type size_t)

� It returns a pointer to the allocated block upon success, of a NULL pointer upon

failure

� The allocated memory is not initialized

� The memory is de-allocated using the free function

117

Memory allocation on the heap

#include <stdlib.h> // Required for malloc

double* data = malloc(10*sizeof(double)); // Request 10 doubles

if (data == NULL) { // Always check that the allocation was OK

printf("Allocation failed\n");

exit(-1);

}

for (size_t i=0 ; i<10 ; i++) { // Initialize the array

data[i] = (double) i+1;

}

free(data); // Always free when not used anymore

data = NULL; // Always set a freed pointer to NULL

118

Function calls

Stack

� Region of memory that grows and

shrinks during execution

� Used for managing environments (local

variables)

Example

double polynomial(double x) {

double p[3] = {3, 4, 5};

double result;

result = p[0]*x*x + p[1]*x + p[2];

return result;

}

int main() {

double x, y;

... // <-Instr ptr

y = polynomial(x);

printf("%f\n", y);

}
119

Function calls

Setting up the call stack by

pushing onto the stack

� Function arguments

� The return address: next

instruction after the call

� The stack frame pointer: base

pointer (%rbp) allowing to

restore the calling function's

stack frame upon return

Example

double polynomial(double z) {

double p[3] = {3, 4, 5}; // <-Stack frame ptr

double result;

result = p[0]*z*z + p[1]*z + p[2];

return result; // Go to next instr after call

}

int main() {

double x, y;

...

y = polynomial(x); // <-Instr ptr

// Next instr after call: copy result in y

printf("%f\n", y);

}
120

Function calls

Setting up the call stack by

pushing onto the stack

Example

double polynomial(double z) {

double p[3] = {3, 4, 5}; // <-Stack frame ptr

double result;

result = p[0]*z*z + p[1]*z + p[2];

return result; // Go to next instr after call

}

int main() {

double x, y;

...

y = polynomial(x); // <-Instr ptr

// Next instr after call: copy result in y

printf("%f\n", y);

}
121

Function calls

Transfer control, and set up the

function's stack frame

� CALL instruction which

changes the instruction

counter to point to the called

function's starting address

� Set the new base pointer

%rbp = %rsp

� Move the stack pointer

(%rsp) to allocate space for

the local variables

Example

double polynomial(double z) {

double p[3] = {3, 4, 5}; // <-Stack frame ptr

double result;

result = p[0]*z*z + p[1]*z + p[2]; // <-Instr ptr

return result; // Go to next instr after call

}

int main() {

double x, y;

...

y = polynomial(x);

// Next instr after call: copy result in y

printf("%f\n", y);

}
122

Function calls

Transfer control, and set up the

function's stack frame

Example

double polynomial(double z) {

double p[3] = {3, 4, 5}; // <-Stack frame ptr

double result;

result = p[0]*z*z + p[1]*z + p[2]; // <-Instr ptr

return result; // Go to next instr after call

}

int main() {

double x, y;

...

y = polynomial(x);

// Next instr after call: copy result in y

printf("%f\n", y);

}
123

Function calls

Execute function, and return

� Store return value (%rax)

� Deallocate local variables: set

%rsp to %rbp

� Restore %rbp to the caller's

one

� Set the next instruction to

%rip

� Clean up the stack: Move

%rsp back to the top of the

stack by popping function

arguments

Example

double polynomial(double z) {

double p[3] = {3, 4, 5}; // <-Stack frame ptr

double result;

result = p[0]*z*z + p[1]*z + p[2]; // <-Instr ptr

return result; // Go to next instr after call

}

int main() {

double x, y;

...

y = polynomial(x);

// Next instr after call: copy result in y

printf("%f\n", y);

}
124

Function calls

Execute function, and return

Example

double polynomial(double z) {

double p[3] = {3, 4, 5}; // <-Stack frame ptr

double result;

result = p[0]*z*z + p[1]*z + p[2]; // <-Instr ptr

return result; // Go to next instr after call

}

int main() {

double x, y;

...

y = polynomial(x);

// Next instr after call: copy result in y

printf("%f\n", y);

}
125

Function calls

Execute function, and return

Example

double polynomial(double z) {

double p[3] = {3, 4, 5}; // <-Stack frame ptr

double result;

result = p[0]*z*z + p[1]*z + p[2]; // <-Instr ptr

return result; // Go to next instr after call

}

int main() {

double x, y;

...

y = polynomial(x);

// Next instr after call: copy result in y

printf("%f\n", y);

}
126

Function calls

Execute function, and return

Example

double polynomial(double z) {

double p[3] = {3, 4, 5}; // <-Stack frame ptr

double result;

result = p[0]*z*z + p[1]*z + p[2]; // <-Instr ptr

return result; // Go to next instr after call

}

int main() {

double x, y;

...

y = polynomial(x);

// Next instr after call: copy result in y

printf("%f\n", y);

}
127

Passing by value

� Recall that for scanf, we passed the addresses of the arguments:

scanf("%d %lf", &a, &b);

� When calling a function, the arguments are passed by value: they are copied in the

function, so they can't be modi�ed

� To modify a variable, the value passed to the function has to be the address of the

variable

� Note: In Fortran, the variable are by default passed by address

128

Formatted I/O

Writing

#include <stdio.h>

FILE* output_file = fopen("output.txt", "w"); // Open output.txt for writing

if (output_file == NULL) {

printf("Error opening input file for reading");

exit(-1);

}

for (int i=0 ; i<10 ; i++) {

fprintf(output_file, "%d %lf\n", i, (double) i); // Write into output_file

}

fclose(output_file);

output_file = NULL;

129

Formatted I/O

Reading

#include <stdio.h>

FILE* input_file = fopen("input.txt", "r"); // Open input.txt for reading

if (input_file == NULL) {

printf("Error opening input file for writing");

exit(-1);

}

int return_code = 0;

while (1) {

int i; double x;

return_code = fscanf(input_file, "%d %lf\n", &i, &x); // Read from input_file

if (return_code == EOF) break;

printf("%d %lf\n", i, x);

}

fclose(input_file);

130

Binary I/O

� Formatted I/O is slow: It takes time to make the binary-decimal conversions

� Binary I/O takes the binary representation and writes it directly in the �le

#include <stdio.h>

#define N 1000

double data[N];

FILE* input_file = fopen("input.bin", "rb"); // Open input.bin for reading in binary mode

size_t fread(data, sizeof(double), N, input_file);

fclose(input_file);

FILE* output_file = fopen("output.bin", "wb"); // Open output.bin for writing in binary mode

size_t fwrite(data, sizeof(double), N, output_file);

fclose(output_file);

output_file = NULL;

131

Structures

� A struct is a user-de�ned type which contains a collection of data of same or

di�erent types:

struct atom_struct {

char* Symbol;

unsigned int atomic_number;

double mass;

double coordinates[3];

};

132

Structures

struct atom_struct helium;

helium.Symbol = "He";

helium.atomic_number = 2;

helium.mass = 4.002;

helium.coordinates = { 0. ; 1. ; 0. };

struct atom_struct * molecule;

molecule = malloc(4*sizeof(struct atom_struct));

� In memory, the elements of the struct have contiguous addresses &helium ==

&(helium.Symbol)

133

Structures

With pointers, (*a).x can be rewritten as a->x

struct atom_struct* helium = malloc(sizeof(struct atom_struct));

helium->Symbol = "He";

helium->atomic_number = 2;

helium->mass = 4.002;

helium->coordinates = { 0. ; 1. ; 0. };

134

Problems with structures

Data alignment

� Consider the struct

struct mystruct {

char c;

double d;

};

� The struct will be allocated on an 8-byte boundary address

� c will be on a 1-byte boundary (as it is on an 8-byte boundary)

� d will be misaligned, as it will be 1-byte away from an 8-byte boundary

� To improve the data access, it is preferable to to put d before c such that they

both have the proper alignment

135

Problems with structures

Data alignment

� Consider the struct:

struct mystruct {

double d;

char c;

};

� If we make an array of those, the

elements of the �rst struct will be well

aligned, but the second struct will be

mis-aligned (as the struct is 9 bytes

long

� To solve this problem, we can use

padding: adding dummy variables to

make the struct a multiple of 8 bytes

struct mystruct {

double d;

char c;

char padding[7];

};

136

Problems with structures

� To optimize memory access, the data should be ordered by decreasing size of the

data types:

� 8-byte variables: double, int64_t, . . .

� Pointers and size_t: double*, int64_t*, char*, float*, . . .

� 4-byte variables: float, int32_t, . . .

� 1-byte variables: char, . . .

� Otherwise, the elements will be misaligned in memory

137

Structure example: Linked list

Linked list

Each element contains

� data

� a pointer to the next element

typedef struct element {

struct element* next;

int data;

} elem;

elem* head = malloc(sizeof(elem));

head->data = 5; head->next = NULL;

elem* second = malloc(sizeof(elem));

second->data = 10; second->next = NULL;

head->next = second;

138

Recursive functions

A recursive function is a function that calls itself. For example:

N! =

1 if N = 0

N × (N − 1)! otherwise

Exercises:

� Write the factorial function, and a program that displays the �rst 10 values

1!, ..., 10!

� Write a recursive function that searches for the �rst negative integer in a liked list,

and returns 0 if not found

139

Recursive functions (factorial)

Solution

#include <stdint.h>

#include <stdio.h>

uint64_t factorial(uint64_t n) {

if (n == 0) return 1;

else return n * factorial(n-1);

}

int main() {

for (int i=0 ; i<10 ; i++) {

printf("%d : %ld \n", i, (long) factorial(i));

}

}

140

Recursive functions (linked list)

Solution

int search(elem* e) {

if (e == NULL) {

return 0;

}

else if (e->data < 0) {

return e->data;

}

else {

return search(e->next);

}

}

141

Functions with nothing to return

void my_function() {

printf("Hello!\n");

}

int main() {

my_function(); // Call the function with no lvalue

return 0;

}

� A function that returns nothing has a void return type

� It is the equivalent of a subroutine in Fortran

� Instead of returning void, you can return some extra information to inform the

user that the function succeeded or failed. For example, printf returns the

number of characters printed (but this is rarely checked). 142

A few tips for malloc/free

� If you make a function that allocates some memory and returns an allocated object,

the caller will need to know that it has to take care of freeing this memory (bad!)

� It is very hard to ensure that there is no memory leak when arrays are allocated in

some functions and freed somewhere else.

� Whenever possible, allocatate arrays and free them int the same function

� If you have a return statement in the middle of a function, remember to free the

allocated arrays before you return:

a = malloc(...);

...

if (condition) {

free(a);

return result;

}

...

free(a);

return result;

143

Returning arrays

You may need to write functions that return an array. For this, you should

� Allocate an array for the result in the calling function

� Pass this array to the function

It is best to always pass the dimensions of the array to the functions so the function can

check that the array is large enough to hold the data.

#include <string.h>

char* strcpy (char* dest, const char* src);

char* strncpy(char* dest, const char* src, size_t n);

strncpy can check that it writes in the bounds of the destination array, but strcpy

can't.
144

References

References

� Dive into systems

� W3Schools C

� Introduction to x86 assembly

� What Every Programmer Should Know About Memory

� Computer Organization and Design

� CERT C Coding standard

� Wikipedia

� Man pages

145

https://diveintosystems.org/
https://www.w3schools.com/c
https://github.com/luamfb/intro_x86-64/
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://youtube.com/playlist?list=PLxfrSxK7P38X7XfG4X8Y9cdOURvC7ObMF&si=qFEftwqEeBNGyQPv
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf

	Introduction to hardware and binary representation
	Data Representation
	Von Neumann Architecture
	Programs
	The C compiler
	Introduction to the C programming language
	Back to compilation
	Back to C
	References

